python - Broadcasting error when counting occurance of data in multiple column -
i using pandas calculating occurrence of data on particular row in column. data use pressure values need find if acutal observation data (d3) appearing on other rows of colums. here data use:-
date aa1 bb1 cc1 aa2 bb2 cc2 aa3 bb3 cc3 01/06/2016 1008 1007.5 1008 1008.4 1006.8 1008 1008.4 1007.4 1008 02/06/2016 1007.8 1007.4 1008.8 1007.8 1006.8 1008.8 1007.6 1007 1008.8 03/06/2016 1007.8 1006.4 1008.2 1007.8 1006.4 1008.2 1006.8 1007 1008.2 04/06/2016 1007.4 1006.5 1007 1007.8 1006.4 1007 1007.6 1006.4 1007 05/06/2016 1008 1006.2 1007.3 1007 1006.8 1007.3 1007.6 1006.4 1007.3 06/06/2016 1007.8 1006.8 1007.9 1007.6 1006.8 1007.9 1007.2 1007 1007.9 07/06/2016 1007.4 1007.4 1007.3 1008 1006.4 1007.3 1007.8 1006.8 1007.3 08/06/2016 1006.4 1005.8 1007 1006.8 1006.4 1007 1007.8 1007 1007 09/06/2016 1007.6 1006 1007.4 1007.4 1005.4 1007.4 1007.6 1007 1007.4 10/06/2016 1008.2 1006.6 1008.3 1008.4 1006.4 1008.3 1008.4 1007.4 1008.3 11/06/2016 1009.2 1007.8 1009 1009 1006.8 1009 1009 1008.2 1009 12/06/2016 1009 1007.4 1010 1009.6 1008.2 1010 1008.5 1007.2 1010 13/06/2016 1010 1009 1009 1009.4 1008.4 1009 1009 1008 1009 14/06/2016 1010.4 1009 1010 1011 1008.9 1010 1009.8 1007.2 1010 15/06/2016 1009.4 1009.2 1009 1009.1 1008.8 1009 1009.9 1008 1009 16/06/2016 1008.8 1007 1007.8 1008.2 1007.2 1007.8 1009 1007 1007.8 17/06/2016 1007 1006 1006.7 1007 1006 1006.7 1007.4 1006.2 1006.7 18/06/2016 1006.5 1005.2 1005.5 1006 1006 1005.5 1006 1006.5 1005.5 19/06/2016 1006.8 1006 1006.4 1007 1005.2 1006.4 1006 1005 1006.4 20/06/2016 1006 1006 1005.2 1005.9 1005.2 1005.2 1007 1004.6 1005.2 21/06/2016 1006.8 1006 1005.4 1006 1004.8 1005.4 1005.2 1005 1005.4 22/06/2016 1006.8 1005.8 1006.7 1008.8 1008 1006.7 1005.8 1006.6 1006.7 23/06/2016 1008 1007.6 1008.7 1009 1007.5 1008.7 1007.2 1008 1008.7 24/06/2016 1006 1005 1008 1007.8 1007 1008 1007.2 1007.6 1008 25/06/2016 1007 1005.8 1008.4 1007 1006 1008.4 1006.8 1007.2 1008.4 26/06/2016 1008 1008 1008.6 1008 1006.8 1008.6 1006 1006 1008.6 27/06/2016 1007.8 1006.4 1008 1006 1006 1008 1007.8 1006.6 1008 28/06/2016 1007.8 1006 1006.4 1006.4 1006.6 1006.4 1007 1007 1006.4 29/06/2016 1006 1008 1007.8 1008 1006.8 1007.8 1008 1007.2 1007.8 30/06/2016 1008 1008 1008.4 1008.2 1008 1008.4 1007.8 1007.8 1008.4 01/07/2016 1008 1007.4 1007.4 1008 1007.5 1007.4 1008 1008 1007.4 02/07/2016 1007 1006.5 1007.8 1007.9 1006.9 1007.8 1007 1006.5 1007.8 03/07/2016 1007.4 1007.2 1007.8 1008 1007 1007.8 1008 1007.5 1007.8 04/07/2016 1008.2 1007.8 1007.9 1008.4 1007.4 1007.9 1008.2 1008 1007.9 05/07/2016 1008 1008 1009.1 1009 1008.2 1009.1 1008.8 1008.6 1009.1 06/07/2016 1008 1008.2 1008.5 1008 1007.5 1008.5 1008.8 1008.5 1008.5 07/07/2016 1007.8 1007.5 1008.3 1008.2 1007.8 1008.3 1008.5 1007.5 1008.3 08/07/2016 1007.5 1008.5 1007.8 1007.9 1007.5 1007.8 1008.5 1008 1007.8 09/07/2016 1008 1008.4 1008 1007.5 1008.4 1008.2 1007.4 1008.4 10/07/2016 1007.8 1008 1008.1 1008 1008.1 1008.5 1007.8 1008.1 11/07/2016 1008.2 1007.6 1008.2 1008.4 1007.8 1008.2 1008.8 1008.2 12/07/2016 1008 1006.6 1008.4 1008 1006.5 1008.4 1008.5 1006.4 1008.4 13/07/2016 1008.2 1007.2 1009.1 1008.4 1006.8 1009.1 1008.8 1007 1009.1 14/07/2016 1007.4 1006.8 1008.6 1007.2 1006.8 1008.6 1007.8 1006.2 1008.6 15/07/2016 1006.4 1006.9 1007.2 1006.8 1007 1007.2 1006 1006.9 1007.2 16/07/2016 1006.4 1006.8 1007 1006 1007 1007 1006 1007 1007 17/07/2016 1007.8 1007.4 1008.2 1007.7 1007.6 1008.2 1007.6 1007.8 1008.2 18/07/2016 1010 1009 1009.8 1010 1009.2 1009.8 1010 1009.8 1009.8 19/07/2016 1010 1009 1010.4 1010 1009.6 1010.4 1010.2 1010.2 1010.4 20/07/2016 1008 1009.5 1009.7 1009.2 1009 1009.7 1009.8 1009.2 1009.7 21/07/2016 1008 1007 1008.6 1008 1007.5 1008.6 1008 1007.4 1008.6 22/07/2016 1008 1006.8 1008.3 1007.8 1006.2 1008.3 1007.8 1008 1008.3 23/07/2016 1006.7 1006.5 1007.7 1008 1006.2 1007.7 1007.4 1006.2 1007.7 24/07/2016 1007.4 1007 1006.5 1007.4 1007.2 1005.2 1007.4 25/07/2016 1006.4 1006.7 1007.6 1007.6 1006 1006.5 1007.6 26/07/2016 1006.6 1006.5 1006.6 1005.8 1006.5 1006.6 1006.6 27/07/2016 1006.4 1007.2 1006.9 1006.4 1006.2 1006.9 1005.6 1006.5 1006.9 28/07/2016 1005.9 1006 1007.6 1006 1006 1007.6 1006.2 1006.5 1007.6 29/07/2016 1007 1007 1007.4 1007 1006.9 1007.4 1006.8 1007 1007.4 30/07/2016 1007 1007 1007.3 1007 1007.2 1007.3 1007 1006 1007.3 31/07/2016 1009 1008.5 1008.6 1007.2 1008.6 1008.6 1008.6 1008.6 01/08/2016 1009.2 1010 1009.6 1009.5 1009 1009.6 1009 1008.2 1009.6 02/08/2016 1008.4 1009 1009.9 1009.7 1009 1009.9 1009 1008.2 1009.9 03/08/2016 1006.6 1006.8 1007.4 1007.2 1006.8 1007.4 1008 1006 1007.4 04/08/2016 1007 1006 1007.1 1006.6 1006.4 1007.1 1006.8 1005.9 1007.1 05/08/2016 1008 1007 1008.2 1007.8 1007 1008.2 1008 1007.4 1008.2 06/08/2016 1007 1008.2 1009.2 1009.6 1007.6 1009.2 1008 1008 1009.2 07/08/2016 1007 1008.2 1008.7 1008.4 1008 1008.7 1008 1008 1008.7 08/08/2016 1007 1008.6 1009.6 1008.4 1008 1009.6 1009.2 1008.2 1009.6 09/08/2016 1009.6 1008.8 1009.8 1008.4 1008.2 1009.8 1009.2 1008.2 1009.8 10/08/2016 1009.6 1008.8 1008.6 1009.6 1009 1008 1009.6 11/08/2016 1009 1009.4 1009.7 1009.7 1009.8 1009 1009.7 12/08/2016 1010.4 1010 1011 1010.2 1009.8 1011 1011 13/08/2016 1010.2 1009.8 1010.2 1010 1009.2 1010.2 1010 1009.4 1010.2 14/08/2016 1009.2 1007.4 1009.5 1009 1007.6 1009.5 1009.4 1007.6 1009.5 15/08/2016 1009 1008 1009.3 1009.2 1008.4 1009.3 1009.2 1008.8 1009.3 16/08/2016 1008.6 1007.8 1009.1 1009 1007.5 1009.1 1009 1007.8 1009.1 17/08/2016 1007.8 1008.2 1008 1007.3 1008.2 1008 1007.2 1008.2 18/08/2016 1007.5 1007.4 1007.2 1007.4 1007.6 1007.1 1007.4 19/08/2016 1007 1007 1007.4 1006.6 1007.4 1006.8 1007.4 20/08/2016 1007 1006.5 1007.6 1007.4 1006.5 1007.6 1006.5 1007.6 21/08/2016 1007 1006.5 1007.3 1006.8 1006.4 1007.3 1006.8 1006.4 1007.3 22/08/2016 1007.5 1007 1008.2 1006.8 1006.4 1008.2 1006.5 1006.8 1008.2 23/08/2016 1008.5 1009 1008.7 1006.6 1006.5 1008.7 1006.5 1006.8 1008.7 24/08/2016 1007.8 1008.8 1008.7 1008 1007.8 1008.7 1006.5 1006.4 1008.7 25/08/2016 1007 1007 1008 1007.8 1007.4 1008 1007.6 1007.2 1008 26/08/2016 1007.8 1007.8 1008.1 1006.8 1006.5 1008.1 1008 1007 1008.1 27/08/2016 1007.8 1007.8 1008.1 1007.4 1007 1008.1 1006.5 1006.4 1008.1 28/08/2016 1008.2 1008.8 1009 1008 1007.9 1009 1007.6 1007.9 1009 29/08/2016 1008.2 1008.2 1008.6 1008 1008 1008.6 1008 1008.2 1008.6 30/08/2016 1008.2 1008.8 1008.2 1006.4 1006.2 1008.2 1007.8 1007.2 1008.2 31/08/2016 1005.8 1007.4 1006.6 1008 1008 1006.6 1006.4 1007 1006.6 01/09/2016 1008 1008 1010.8 1008 1007.8 1010.8 1007.8 1007.2 1010.8 02/09/2016 1005.8 1007.4 1010 1008.5 1009 1010 1009 1009.2 1010 03/09/2016 1008 1008 1010 1008 1007.8 1010 1008.5 1009.2 1010 04/09/2016 1009 1008.5 1009 1009 1009 1009.2 1009 05/09/2016 1010 1011.5 1011.5 1011.5 1008.5 1009.2 1011.5 06/09/2016 1011 1011 1010 1011 1011.5 1010 1010 07/09/2016 1008 1008 1011 1011 1011.5 1011 08/09/2016 1010.5 1010.5 1010.2 1008.5 1009 1010.2 1010 1009.9 1010.2 09/09/2016 1009.5 1009.8 1010.2 1009.8 1010 1010.2 1008.5 1009.2 1010.2 10/09/2016 1009.2 1009.2 1009.8 1009.2 1009.8 1009.8 1009 1009 1009.8 11/09/2016 1009.5 1009.8 1009.5 1008.6 1008.5 1009.5 1008 1008.5 1009.5 12/09/2016 1009.5 1009.8 1008.4 1009.2 1009.8 1008.4 1007.6 1007 1008.4 13/09/2016 1009.2 1009.2 1008.4 1009 1009.8 1008.4 1008 1008.5 1008.4 14/09/2016 1008.5 1008 1008 1008.6 1008.5 1008 1008 1008 1008 15/09/2016 1008 1008 1008.3 1008 1007 1008.3 1007.6 1007 1008.3 16/09/2016 1006 1007 1008.3 1008 1007 1008.3 1008 1007.5 1008.3 17/09/2016 1008.7 1008 1008.7 1008.6 1008 1008.7 1009 1008 1008.7 18/09/2016 1008.4 1008 1008.8 1008.6 1008 1008.8 100.9.0 1008.4 1008.8 19/09/2016 1006 1007 1008 1009 1008 1008 1010 1009 1008 20/09/2016 1009 1008 1009.5 1008.6 1008 1009.5 1007.8 1009 1009.5 21/09/2016 1007.8 1007.4 1009.5 1008 1007 1009.5 100.9.0 1008.4 1009.5 22/09/2016 1009 1008 1009 1008.4 1008.2 1009 1008.8 1008 1009 23/09/2016 1008.8 1007.8 1009.1 1008 1007 1009.1 1008 1008 1009.1 24/09/2016 1007 1006.4 1007.7 1007 1006 1007.7 1008.8 1008 1007.7 25/09/2016 1006 1006 1006.8 1005.8 1005.6 1006.8 1005.8 1004.6 1006.8 26/09/2016 1007 1005.6 1007 1006 1006 1007 1006.2 1005.4 1007 27/09/2016 1006 1006 1008 1008 1007.2 1008 1007 1007 1008 28/09/2016 1008 1007.6 1008.9 1006 1006 1008.9 1008 1007.4 1008.9 29/09/2016 1007.2 1007 1008.9 1006.8 1007 1008.9 1007 1007 1008.9 30/09/2016 1008 1007.6 1007.5 1006.5 1006.5 1007.5 1006.6 1006 1007.5
i using this particular code counting occurrence (if last column data within + or - 1):-
df = pd.read_csv(data_path, index_col=0, parse_dates=true, dayfirst=true) occu_1 = (df[['aa3', 'bb3']].sub(df['cc3'], axis=0).abs() < 1).all(1).sum()
the issue facing pandas result in following value error:-
valueerror: operands not broadcast shapes (244,) (122,)
what puzzles me have exact row , column other parameter not produce errors. can 1 me in right direction.
found issue. there value 100.9.0
in 1 of column have extracted calculation. believe error message seems point else. similarly, had data set t
there in between data set , produced same valueerror. strange debug info.
wiki
Comments
Post a Comment